• scikit-bio™ is an open-source, BSD-licensed, python package providing data structures, algorithms, and educational resources for bioinformatics.

    Note: scikit-bio is no longer compatible with Python 2. scikit-bio is compatible with Python 3.6 and later.

    scikit-bio is currently in beta. We are very actively developing it, and backward-incompatible interface changes can and will arise. To avoid these types of changes being a surprise to our users, our public APIs are decorated to make it clear to users when an API can be relied upon (stable) and when it may be subject to change (experimental). See the API stability docs for more details, including what we mean by stable and experimental in this context.

    2025好用的ios爬墙软件

    The recommended way to install scikit-bio is via the conda package manager available in Anaconda or miniconda.

    To install the latest release of scikit-bio:

    conda install -c http://conda.anaconda.org/biocore scikit-bio
    

    Alternatively, you can install scikit-bio using pip:

    pip install numpy
    pip install scikit-bio
    

    You can verify your installation by running the scikit-bio unit tests:

    python -m skbio.test
    

    For users of Debian, skbio is in the Debian software distribution and may be installed using:

    sudo apt-get install python3-skbio python-skbio-doc
    

    2025好用的ios爬墙软件

    To get help with scikit-bio, you should use the skbio tag on StackOverflow (SO). Before posting a question, check out SO's guide on how to 安卓手机安装tunsafe. The scikit-bio developers regularly monitor the skbio SO tag.

    2025好用的ios爬墙软件

    Some of the projects that we know of that are using scikit-bio are:

    • QIIME
    • Emperor
    • Gneiss
    • An Introduction to Applied Bioinformatics
    • tax2tree
    • Qiita
    • ghost-tree
    • Platypus-Conquistador

    If you're using scikit-bio in your own projects, feel free to issue a pull request to add them to this list.

    2025好用的ios爬墙软件

    If you're interested in getting involved in scikit-bio development, see CONTRIBUTING.md.

    See the list of scikit-bio's contributors.

    2025好用的ios爬墙软件

    scikit-bio is available under the new BSD license. See COPYING.txt for scikit-bio's license, and the tunsafe安装包 for the licenses of third-party software that is (either partially or entirely) distributed with scikit-bio.

    2025好用的ios爬墙软件

    scikit-bio began from code derived from PyCogent and QIIME, and the contributors and/or copyright holders have agreed to make the code they wrote for PyCogent and/or QIIME available under the BSD license. The contributors to PyCogent and/or QIIME modules that have been ported to scikit-bio are: Rob Knight (@rob-knight), Gavin Huttley (@gavin-huttley), Daniel McDonald (@wasade), Micah Hamady, Antonio Gonzalez (tunsafe安卓百度云), Sandra Smit, Greg Caporaso (@gregcaporaso), Jai Ram Rideout (@jairideout), Cathy Lozupone (@clozupone), Mike Robeson (@mikerobeson), Marcin Cieslik, Peter Maxwell, Jeremy Widmann, Zongzhi Liu, Michael Dwan, Logan Knecht (@loganknecht), Andrew Cochran, Jose Carlos Clemente (@cleme), Damien Coy, Levi McCracken, Andrew Butterfield, Will Van Treuren (@wdwvt1), Justin Kuczynski (@justin212k), Jose Antonio Navas Molina (@josenavas), Matthew Wakefield (@genomematt) and Jens Reeder (@jensreeder).

    2025好用的ios爬墙软件

    scikit-bio's logo was created by Alina Prassas.

                                    ssr机场下载地址,ssr机场永久免费加速,ssr机场2025,ssr机场不能用了  月光加速器最新版,月光加速器2025,月光加速器vqn,月光加速器vn  胖鱼加速器下载地址,胖鱼加速器7天试用,胖鱼加速器2025,胖鱼加速器vps  SCRTNET7天试用,SCRTNET2025年,SCRTNET打不开了,SCRTNETvp  牧牛云官网,牧牛云pc版下载,牧牛云7天试用,牧牛云2025  Ensoleillé官网网址,Ensoleillé2025年,Ensoleillé不能用了,Ensoleillévp  加速器试用3小时,魔法加速器官网,永久不收费的加速器2025,  Saiki最新版,Saiki2025,Saiki2025年,Saikivqn